Classification of Medical Data Derived from Diagnostic Devices Using Ensembles of Classifiers

نویسندگان

  • Liliana BYCZKOWSKA-LIPIŃSKA
  • Agnieszka WOSIAK
چکیده

The use of ensemble of classifiers for classification of medical data derived from diagnostic devices has been proposed in this research. The experimental studies were carried out on three datasets concerning different medical problems: arrhythmia, breast cancer and coronary artery disease using SPECT images. The comparison of single classification algorithms (kNNIBk, C4.5 J48, Naïve Bayes, Random Tree and SMO) with bagging, boosting and majority voting using all single classifiers was performed. Experimental studies have proved that hybrid classifiers outperformed single classification in all cases in terms of accuracy, precision, sensitivity and root squared mean error, regardless of the dataset. Streszczenie. W ramach niniejszej pracy zaproponowane zostało zastosowanie komitetów klasyfikatorów w procesie klasyfikacji danych pochodzących z urządzeń medycznych. Badania eksperymentalne zostały przeprowadzone na trzech zbiorach danych dotyczących różnych problemów medycznych: arytmii, nowotworu piersi oraz choroby wieńcowej. Przeprowadzono porównanie pojedynczych technik klasyfikacji (kNNIBk, C4.5 J48, Naïve Bayes, Random Tree oraz SMO) z metodami hybrydowymi (bagging, boosting oraz głosowanie większościowe). Badania eksperymentalne wykazały skuteczność klasyfikacji z zastosowaniem komitetów klasyfikatorów – w wszystkich badanych przypadkach rezultaty klasyfikacji hybrydowej były lepsze od wyników najlepszego pojedynczego klasyfikatora biorąc pod uwagę dokładność, precyzję, czułość oraz błąd średniokwadratowy. (Zastosowanie Komitetów Klasyfikatorów w Procesie Klasyfikacji Danych Pozyskanych za Pomocą Urządzeń Diagnostyki Medycznej). Słowa kluczowe: eksploracyjna analiza danych, klasyfikacja, komitety klasyfikatorów, dane medyczne

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Different Corneal Parameters to Improve the Diagnosis of Keratoconus

Purpose: To diagnose keratoconus from healthy eyes, as well as suspected keratoconus. Methods: Certain parameters were extracted from Casia, Corvis, and Pentacam HR devices for 3 groups of healthy, with keratoconus, and suspected keratoconus. This study was performed on 340 eyes with keratoconus, 310 normal eyes, and 350 suspected keratoconus. The processing method involved the fusion of featur...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

متن کامل

Modeling and design of a diagnostic and screening algorithm based on hybrid feature selection-enabled linear support vector machine classification

Background: In the current study, a hybrid feature selection approach involving filter and wrapper methods is applied to some bioscience databases with various records, attributes and classes; hence, this strategy enjoys the advantages of both methods such as fast execution, generality, and accuracy. The purpose is diagnosing of the disease status and estimating of the patient survival. Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015